
 

 

 

 

 

 

 

 

 

 

 

Enterprise Ajax Security with ICEfaces 

 

June 2007 

 

 

 

Stephen Maryka 

CTO 

ICEsoft Technologies Inc. 

 

 

 

 



 

 

 

© 2007 ICEsoft Technologies Inc.  2 

Download ICEfaces  
http://www.icefaces.org/main/downloads/ 

 

Abstract 

The question is simple:  Can enterprise application developers deliver Rich Internet Applications using Ajax 

techniques, but do so in a secure and cost-effective manner? 

The evidence is mounting:  The Yammer1 and MySpace2 worms are two early examples that illustrate Ajax-

based implementations are susceptible to attack, and these attacks have the particularly nasty characteristic of 

being completely invisible to the users being violated, and thus can proliferate at astounding rates. 

The solutions are sparse:  While the Ajax world is exploding with new capabilities and wiz-bang features, 

technology providers have been derelict in addressing fundamental security issues in the offerings they 

promote, leaving a formidable security challenge for the application developer to address. 

In this paper we will examine some of the fundamental security issues related to client-centric Ajax techniques, 

and will show how these issues can be overcome using a server-centric approach based on Java EE and 

ICEfaces. 

The Fundamentals of Ajax Insecurity 

The client is untrusted, SO DON”T TRUST IT!  This is as fundamental as it gets.  The entire web security model 

is based on the premise of an insecure client, and established and proven security architectures have evolved 

on this basis.  With the popular adoption of Ajax techniques, there is a growing tendency toward client-centric 

implementations despite the fact that the approach breaks the fundamental premise of the untrusted client.  

So, regardless of what client-centric Ajax technology you might pick, you will have to address some 

fundamental security issues. 

Client-centric business logic and data:  In order to enable a rich user interface, most sophisticated Ajax libraries 

promote a client run time environment where the user interface and associated business logic and data coexist 

on the client in order to achieve the rich interactive features required.  There is simply no way to protect 

business logic and data in these types of implementations, which means that the developer must be diligent 

about identifying sensitive logic and data and determining how best to secure it.  It will be necessary to push 

sensitive parts of the implementation back to the server in order to properly protect them, which can lead to 

considerable additional complexity in the implementation, and may severely restrict the Ajax features that can 

be used. 

Client-centric validation:  While client-side validation using Ajax techniques can be effective for providing 

immediate feedback to the user, it cannot be trusted to ensure the data submitted back to the server-resident 

elements of the application is valid and safe.  It is necessary to implement a complete server-resident validation 

subsystem to sufficiently protect server-based assets.  Now you face the challenge of maintaining two sets of 

validation logic, and any inconsistencies between them may open a security hole in the application.  

Furthermore, an attacker may gain clues on how to attack the application by examining the client-resident 

validation logic. 

XMLHttpRequest (XHR):  The XHR is fundamental to all Ajax approaches, and the basic mechanism itself does 

not introduce additional security concerns, as it inherits the same privileges as the initial HTTP request. 

Additionally, XHR is not permitted to make cross-domain requests, so in itself XHR can be a secure mechanism. 

The security issues with XHR arise from its improper/insecure use.  One prevalent approach is to use XHR to 

implement a network interface back into server-resident resources.  While this may be the most straightforward 

http://secunia.com/virus_information/29782/js.yamanner/
http://namb.la/popular/tech.html
www.icefaces.org


 

 

 

© 2007 ICEsoft Technologies Inc.  3 

Download ICEfaces  
http://www.icefaces.org/main/downloads/ 

 

way to implement a client-centric, Ajax-based application, the network interface to 

those protected services cannot be concealed and offers the hacker a well-defined attack 

surface, if proper access control is not established.  The security concerns with XHR are magnified by the 

invisible nature of mechanism.  Any security violation achieved through XHR can occur without being in any 

way visible to the user, which means that a security breach can propagate rapidly through a community of 

users that is completely unaware that an attack is in progress.  The use of XHR in cross-site scripting attacks 

can be particularly lethal for this reason. 

Implementation Complexity:  The distributed nature of a client-centric, Ajax-enabled, application introduces 

complexity to the application when compared with traditional server-centric approaches.  It requires a 

significant amount of JavaScript development, which in itself introduces complexity to development and testing.  

Furthermore, the distinct roles of developer, designer, and security expert are blurred in this model.  Now your 

JavaScript developer needs to be a security expert as well.  The bottom line is that as complexity rises, the 

potential for security issues also rises, and the QA process will not typically catch these issues, as they manifest 

themselves as hidden unintended functionality.  This unintended functionality can be fertile ground for the 

diligent attacker.  Beyond the complexity of your own implementation, the implementation of the Ajax 

framework itself may be inherently insecure.  It is a pretty safe bet that a complete security audit has not been 

performed on your JavaScript framework of choice. 

Security Through Obscurity:  The notion of the untrusted client trumps the notion that client resources can be 

protected through some form of obfuscation.  The simple fact is, obfuscation provides no real security, and in 

the worst case may provide a false sense of security to the developer. 

Leveraging the Java EE Architecture 

From the previous discussion it is clear that there are fundamental security concerns with client-centric 

approaches, and that extreme diligence will be required to implement a suitable security architecture.  There is 

a big advantage if we can step away from client-centric approaches and back toward server-centric approaches, 

as we can leverage the existing, industry-proven Java EE security architecture. 

An Established Security Architecture:  Security has always been a first-class consideration in the Java EE stack 

and has matured to the point where the security architecture is well established from the persistence layer 

through to the presentation layer.  Furthermore, proven implementations such as JAAS and Acegi are prevalent, 

so you don’t have to invent a security architecture and implement it yourself. 

Separation of Roles:  Another advantage of the Java EE architecture is that it promotes clean separation of roles 

between the page designer, Java developer, and security architect.  The security architect can establish overall 

security policies, and identify appropriate technologies for implementation.  The Java developer can use the 

specified security technologies to implement back-end security, and establish necessary access control at 

various levels of the application architecture.  The page designer can deal with high-level concepts like user 

roles when implementing the UI, and will not have to be concerned about the details of the access control 

implementation itself. 

So where is the Ajax?  It is all fine and good to say we are going to use a server-centric approach and leverage 

the existing Java EE security architecture while maintaining separation of roles during development, but can we 

achieve effective rich client features based on Ajax techniques with such an approach?  We turn our attention 

to the Java EE presentation layer technologies to make this determination.  JSF is the most recent addition to 

the Java EE stack and it provides a good foundation to build on.  JSF itself is not Ajax-enabled and relies on a 

full-page refresh to affect presentation changes, but it is completely server-centric so provides us with the  

www.icefaces.org


 

 

 

© 2007 ICEsoft Technologies Inc.  4 

Download ICEfaces  
http://www.icefaces.org/main/downloads/ 

 

 

security characteristics that we seek.  So, if we can establish Ajax functionality in JSF without compromising the 

server-centric nature of the framework we will be able to inherit the existing Java EE security architecture.  This 

is precisely where the open source ICEfaces technology comes into play. 

ICEfaces: Server-centric Ajax with JSF 

Preserving the JSF Lifecycle:  Central to the JSF architecture is the JSF lifecycle, which is illustrated in Figure 1 

below.   

 

 

 

Figure 1: JSF Lifecycle 

The lifecycle kicks off with a standard request, which is processed to apply request values, passes through 

validation, updates the model values, invokes application-specific processing, and finally results in new 

presentation generated from the render response phase of the lifecycle.  If you look to Ajaxify JSF it is 

important that the approach not circumvent the JSF lifecycle, otherwise you may be circumventing the server-

centric security architecture that we seek to preserve.  You can expect that if XHR is used from the JSF-

generated presentation markup to directly access server-side resources you will be exposed to the same 

security concerns associated with client-centric approaches.  In order to ensure lifecycle preservation, any use 

of XHR needs to be restricted to standard form submission so the entire JSF lifecycle can execute.  There are 

two key mechanisms required to achieve Ajax functionality under this restriction.  

• An automatic, partial submission mechanism is required to react to user interaction with the 

presentation in order to submit a request back to the server for processing.  It is automatic in the 

sense that each UI control will perform these submissions in a natural way, without requiring developer 

intervention.  For example, when focus moves out of an input text field an automatic submission 

should occur so that user input can be processed.  The submission is partial in the sense that it may 

not be necessary to process the entire form, as there will likely be various elements in the form that 

www.icefaces.org


 

 

 

© 2007 ICEsoft Technologies Inc.  5 

Download ICEfaces  
http://www.icefaces.org/main/downloads/ 

 

the user has not yet interacted with.  For example you don’t want validators 

running against input controls that are still blank. 

• An incremental presentation updated mechanism is required to eliminate excessive rerendering of the 

browser page.  Ideally, this mechanism should result in the minimum required updates to the page, 

and should require no developer intervention.  The need for the developer or designer to wire together 

the elements on the page that may impact each other’s presentation under various conditions can be 

very tedious and error prone.  Additionally, the need to do this blurs the separation of roles between 

the developer and designer. 

The ICEfaces Solution:  The ICEfaces architecture, as illustrated in Figure 2, provides the required mechanisms 

to Ajaxify JSF while preserving the lifecycle, and inheriting the underlying Java EE security architecture. 

 

 

 

Figure 2: Basic Architecture of ICEfaces 

Central to the ICEfaces architecture is a lightweight Ajax Bridge that facilitates both the incremental 

presentation update mechanism, and automatic partial submission mechanism.  While elements of the bridge 

are implemented in JavaScript and execute client-side, it is a small fixed-function piece of code that exposes 

only a standard submit mechanism via XHR, and handles only pure presentation data during incremental 

updates, so does not introduce any security holes to the Java EE security architecture.   

The partial submit mechanism is built in to the ICEfaces component suite, so the developer has control over the 

mechanism on a component level basis, using a standard component attribute.  Simply specifying 

“partialSubmit=true” on an ICEfaces component will result in a partial submit when the user interacts with 

it.  The bridge handles the rest of the process in a completely transparent fashion, including limiting the 

validation process to controls that the user has interacted with. 

In order to Ajaxify the render response phase ICEfaces uses a technique called Direct-to-DOM rendering with 

incremental update. Basically, the entire response is rendered directly into a server-side DOM, and incremental 

changes to the DOM are distilled out and delivered to the client via the bridge. The client-side of the bridge 

www.icefaces.org


 

 

 

© 2007 ICEsoft Technologies Inc.  6 

Download ICEfaces  
http://www.icefaces.org/main/downloads/ 

 

reassembles the changes in the browser DOM, resulting in smooth incremental page 

updates.  A key advantage to this approach is that the framework determines precisely the 

minimal updates to be applied, and does so in a transparently fashion.  There is no explicit need for the 

developer to tediously wire together components that might affect each other. 

Presentation Layer Access Control:  In addition to the fundamentally secure Ajax features of ICEfaces, 

presentation layer access control is also supported in a natural fashion.  Using standard component level 

attributes with dynamic binds such as a rendered={#…}, disabled={#…}, renderedOnUserRole={#…}, 

enabledOnUserRole={#…} the designer can incorporate role-based access control features into the 

application UI, and leverage the server-side user authentication mechanisms transparently. 

Inherent Security Benefits with ICEfaces 

ICEfaces allows Java enterprise developers to build pure, server-centric Java applications that include 

Ajax functionality without requiring any low-level Ajax development, and that inherit underlying Java EE 

security characteristics. Concrete security benefits that ICEfaces delivers include the following: 

• The application is completely server-centric. No business logic or application data is managed at 

the client, only pure presentation. 

• Validation is all performed server-side, so no mismatches or inconsistencies between client-side 

and server-side validation can occur. 

• XHR is used only for standard form submission. No security holes are opened with XHR acting as 

a data interface into the server-side application data. The attack surface is limited to the UI itself, 

eliminating invisible attacks. 

• The Ajax Bridge is fixed-size and fixed-function, making it security auditable and testable. 

• No dynamic script injection is required, and there are no client-side interpreters that can be 

compromised. 

• JSF automatically escapes output, preventing injection of malicious JavaScript and cross-site 

scripting attacks. 

• Back-end persistence technologies, such as Hibernate, escape SQL input, preventing SQL-

injection attacks. 

• Existing Java EE access-control techniques can be applied, and presentation layer access control 

is fully supported in the ICEfaces component suite. 

• SSL can be used to secure the connection. 

Now if you return to the general security concerns with client-centric Ajax techniques, you will see that 

the ICEfaces approach addresses them using a server-centric approach. Security is inherent, allowing 

developers and designers to focus on the creative aspects of application development. So, if you are 

about to enter the world of enterprise Ajax development and security is paramount, use a server-centric 

approach based on ICEfaces, JSF and Java EE, and inherit a security architecture rather than inventing 

one yourself. 

www.icefaces.org


 

 

 

© 2007 ICEsoft Technologies Inc.  7 

Download ICEfaces  
http://www.icefaces.org/main/downloads/ 

 

 

References 

1. Securina (2007). Technical explanation of the JS/Yamanner Worm (2006). Article retrieved June 2007 from: 

http://secunia.com/virus_information/29782/js.yamanner/ 

 

2. Technical explanation of the MySpace Worm (2006). Article retrieved June 2007 from: 

http://namb.la/popular/tech.html 

 

 

 

 

No part of this publication may be copied in any form, by photocopy, microfilm, retrieval system, or by any other means now known or 

hereafter invented without the prior written permission of ICEsoft Technologies, Inc. 

The content in this guide is protected under copyright law even if it is not distributed with software that includes an end user license 

agreement. 

The content in this document is furnished for informational use only, is subject to change without notice, and should not be construed as 

a commitment by ICEsoft Technologies, Inc. 

ICEsoft Technologies, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content 

contained in this document. 

ICEfaces is a trademark of ICEsoft Technologies, Inc. 

Sun, Sun Microsystems, the Sun logo, Solaris, Java and The Network is The Computer are trademarks or registered trademarks of Sun 

Microsystems, Inc. in the United States and in other countries. 

All other trademarks mentioned herein are the property of their respective owners. 

 

Copyright 2007 ICEsoft Technologies, Inc. All rights reserved. 

 

About ICEfaces 

 

ICEfaces, is an Ajax-based Java EE framework for developing and deploying thin-

client, rich enterprise applications.   

http://www.icefaces.org 

 

About ICEsoft 

 

ICEsoft Technologies Inc., is the leading provider of standards-compliant, AJAX-

based solutions for deploying pure Java, rich Internet applications. 

http://www.icefaces.com 

 

ICEsoft Technologies, Inc. 

 

Suite 300, 1717 10th St. NW 

Calgary, Alberta, Canada  

T2M 4S2 

 

Toll Free: 1-877-263-3822 USA & Canada 

Main: +001 (403) 663-3322 

Fax: +001 (403) 663-3320 

 

For additional information, please visit: www.icefaces.org 

June 2007 

 

www.icefaces.org

