
A PDF Test-Set for Well-Formedness Validation in JHOVE - The
Good, the Bad and the Ugly

Michelle Lindlar
TIB - Leibniz Information Centre of

Science and Technology
Welfengarten 1B

Hannover, Germany 30167
michelle.lindlar@tib.eu

Yvonne Tunnat
ZBW - Leibniz Inforation Centre of

Economics
Düsternbrooker Weg 120
Kiel, Germany 24105
y.tunnat@zbw.eu

Carl Wilson
OPF - Open Preservation Foundation

c/o The British Library
Boston Spa, United Kingdom LS23

7BQ
carl@openpreservation.org

ABSTRACT

Digital preservation and active software stewardship are both cycli-

cal processes. While digital preservation strategies have to be

reevaluated regularly to ensure that they still meet technological

and organizational requirements, software needs to be tested with

every new release to ensure that it functions correctly. JHOVE is

an open source format validation tool which plays a central role

in many digital preservation workflows and the PDF module is

one of its most important features. Unlike tools such as Adobe

PreFlight or veraPDF which check against requirements at profile

level, JHOVE’s PDF-module is the only tool that can validate the

syntax and structure of PDF files. Despite JHOVE’s widespread

and long-standing adoption, the underlying validation rules are not

formally or thoroughly tested, leading to bugs going undetected

for a long time. Furthermore, there is no ground-truth data set

which can be used to understand and test PDF validation at the

structural level. The authors present a corpus of light-weight files

designed to test the validation criteria of JHOVE’s PDF module

against “well-formedness”. We conclude by measuring the code

coverage of the test corpus within JHOVE PDF validation and by

feeding detected inconsistencies of the PDF-module back into the

open source development process.

KEYWORDS

file format validation, PDF, test data, quality assurance, JHOVE

ACM Reference format:

Michelle Lindlar, Yvonne Tunnat, and Carl Wilson. 2017. A PDF Test-Set for

Well-Formedness Validation in JHOVE - The Good, the Bad and the Ugly. In

Proceedings of iPRES Conference, Kyoto, Japan, September 2017 (iPRES 2017),

11 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

File format validation is a central task in digital preservation pro-

cesses, giving insight into the degree with which the digital object

complies with the specification of the file format it purports to be.

For complex formats such as PDF, which allow for a multitude of

content types and variations, such as embedded AV material or

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

iPRES 2017, Kyoto, Japan

© 2017 Copyright held by the owner/author(s). 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

embedded and non-embedded fonts, validation poses a challenging

problem. While software to validate digital object’s against PDF

profile requirements such as PDF/A1 or PDF/X exist, they typically

focus on the requirements of the profile and do not take the syntac-

tical and structural requirements of the underlying PDF format into

account [8]. As of today, the go-to validator for the PDF format

is the open source tool JHOVE [23]2. The initial development of

JHOVE dates back to 2003-2008 and the tool has been widely used

by digital archives since.

Digital preservation and active software stewardship are both

cyclical processes. While digital preservation strategies have to be

regularly reevaluated to ensure they continue to meet technological

and organizational requirements, software needs to be tested with

every new release to ensure that it functions correctly. Despite

JHOVE’s widespread and long-standing adoption, the underlying

validation rules are not formally or thoroughly tested, leading to

bugs which can go undetected for a long time. Formal testing for

complex software such as file format validators has to be automated.

However, a requirement for such automated testing processes is a

ground-truth as a point of reference, ideally manifested in a light-

weight test set. This test set can be used to check the validator’s

capability to enforce specific clauses in the format specification. In

the case of PDF validation in general and JHOVE specifically, no

such test-set has been available until now.

This paper describes the authors’ efforts to narrow this gap by

building a light-weight test-set for PDF validation. The test set

focuses on the validation against structural and syntactical require-

ments3 of the PDF file format as described in the ISO 32000-1:2008

standard for PDF 1.7. It will not look at particular profile require-

ments such as those described in the ISO 19005 series for PDF/A. As

the standard does not make a clear distinction between well-formed

and valid requirements, these are derived by looking at required

structural parts of any PDF object, namely: a header, a body con-

sisting of a minimal set of objects, a cross-reference table and a

trailer (see Figure 1). While JHOVE only supports PDF features up

to version 1.7, the cases implemented in the test set are common to

all PDF versions. The aim of test set is threefold:

(1) to establish a ground truth for what is not well-formed

(2) to test the JHOVE software against that ground truth

(3) to improve automated regression testing

1For PDF/A, e.g.: veraPDF, Callas pdfapilot, PDFTron, 3-Heightsffl
2While the JHOVE framework includes a variety of validation modules, this paper
limits the scope to the PDF-module. Within the context of this paper JHOVE is
therefore used as a synonym for the JHOVE framework’s PDF-module.
3Syntactical and structural requirements equal JHOVE’s well-formedness criteria.
Please refer to section 2.1 for further discussion.



iPRES 2017, September 2017, Kyoto, Japan Michelle Lindlar, Yvonne Tunnat, and Carl Wilson

Section 2 of this paper will introduce the concept of file for-

mat validation and give insight into the development of JHOVE

in general and the PDF module in particular to provide a contex-

tual framework for the test set work. Section 3 will introduce the

methodology used for the construction of the test set as well as

for measuring and describing the automated regression testing gap.

Section 4 describes the test set itself and the results of running the

JHOVE PDF-module4 across the test set. To introduce a second

point of reference, each test file is also rendered using a suitable

application5. While the ability to render a file correctly does not

guarantee that it is well-formed, incorrectly displayed content or

the failure to render often indicates that the file is not well-formed.

Section 5 discusses the impact of the test set as a ground-truth

and as an improving factor in current JHOVE code as well as in

existing automated regression processes. We conclude with section

6, highlighting possibilities for further work building on the test

set described in this paper.

Figure 1: Basic PDF structure

2 BACKGROUND AND RELATEDWORK

File format validation is a challenging task. Section 2.1 describes the

motivation behind and general approach to file format validation,

sections 2.2 and 2.4 illustrate how this challenge was met in the

development of the JHOVE framework and the PDF-module, respec-

tively. As aforementioned, very few efforts have been undertaken

to validate against standard requirements of PDF at a structural and

syntactical level, a recent exception being Caradoc [8]. Written in

OCaml and first introduced in 2016, Caradoc is still in its beta stage6.

As opposed to JHOVE, which skips over unsupported structures

thus considering them valid by default, Caradoc sets out to take

a whitelist approach, considering unknown features as suspicious

by default and flagging them as invalid. While this is a thorough

approach, the current implementation of Caradoc only serves as a

proof-of-concept, containing rules for a very limited number of PDF

features. Due to this, the vast majority of “real-life” PDFs currently

fail validation with Caradoc.

4At the point of writing the latest available version is JHOVE 1.16 framework, which
wraps PDF-module v1.8
5The rendering application used is Adobe Acrobat Professional 11.0.15.2
6See https://github.com/ANSSI-FR/caradoc for beta 0.3 of the Caradoc tool

Hence, the digital preservation community largely relies on

JHOVE for validation - despite known bugs7. The adoption of

and ongoing work on JHOVE will be introduced in section 2.3,

further motivating the relevance of and urgent need for thorough

regression testing and ground-truth data.

2.1 File Format Validation

File format validation is the process of checking an object’s confor-

mance to syntactic and semantic rules of the format it purports to

be. As such, it is closely related to file format identification. While

most pattern based identification tools such as DROID or file rely

on short signatures such as magic numbers, full identification re-

quires an analysis of the entire bit-stream and a comparison to the

structure and semantics prescribed by the file format’s specification

[1]. To illustrate, consider the following minimal PDF code of the

file minimal test.pdf:

%PDF-1.4

%%EOF

Minimal test.pdf is identified as PDF 1.4 by standard file format

identification tools8. JHOVE, however, recognizes that the object is

Not well-formed, indicating problems at the basic structural level

of the file format level which the object purports to be. Ideally, the

normative syntactic and semantic rules used to check the validity of

an object are taken from the file format’s authoritative specification.

However, in many cases a specification may not exist or may not

be publicly available. Format specifications not written within an

official standardization context present another problem. These are

often ambiguous and therefore open to interpretation [2]. Ambigu-

ities in the PDF specifications published by Adobe have lead to a

rather broad interpretation of the file formats syntactical and se-

mantic makeup. This, in return, has lead to PDF rendering software

being forgiving towards many violations, resulting in files which

are strictly speaking invalid but are still renderable and usable [2].

Format validation is usually broken down into two conformance

levels - determining whether an object is well-formed and valid.

The W3C Extensible Markup Language Standard [31], for example,

clearly defines the constraints of a well-formed XML object. In

short, a well-formed XML document must contain exactly one root

element, consist of one or more correctly nested and delimited ele-

ments and follow the regulations specified for entities. While well-

formed XML objects comply with the XML specification, valid XML

objects comply with an XML schema. In short, well-formedness

addresses the syntactic correctness while validity describes the se-

mantic correctness of an object’s conformity to the file format it

purports to be. JHOVE file format modules adhere to this two-tiered

conformance checking. The validation rules implemented in the

TIFF module, for example, determine a file to be well-formed if the

beginning of the file is an 8 byte header followed by a sequence of

Image File Directories, which in return are each composed of a 2

byte entry count and a series of 8 byte tagged entries. The mod-

ule defines an object as being valid if it meets certain additional

7E.g., see comment from original JHOVE developer Gary McGath on 2014-07-10: “The
PDF module has a history of bugs relating to page trees, (…). If other software doesn’t
complain, I’d be inclined to call this a JHOVE bug.” https://sourceforge.net/p/jhove/
discussion/797887/thread/2050dc83/#c70f
8Tested with: DROID 6.2.1,Signature File V88, Siegfried 1.5.0 (both identified via
signature pattern); TrID/32 v2.24 (findings: 100% PDF without PDF version output)
and File for windows v5.03



A PDF Test-Set for Well-Formedness Validation in JHOVE - The Good, the Bad and the Ugly iPRES 2017, September 2017, Kyoto, Japan

semantic-level rules, such as that TileWidth (322) and TileLength

(323) values are integral multiples of 16 [14]. Most format modules

consider well-formedness a prerequisite of validity.9

Validation rules for the JHOVE PDF-module will be discussed

further in section 2.4.

2.2 Brief History of JHOVE

JHOVE is by nomeans a new tool to the digital preservation commu-

nity. The idea of the JSTOR/Harvard Object Validation Environment

dates back to 2003 [7]. Partially funded by the Andrew W. Mellon

Foundation [24], initial development of the driver and API layers as

well as the ASCII, UTF-8, PDF, TIFF, GIF, JPEG and XML modules

took 10 months and involved 1.35 full-time equivalents (0.10 project

management, 0.25 senior analyst, 1 developer)[7]. With the initial

release of version 1.0 in May of 2005, work on JHOVE continued

under the auspices of the JSTOR Electronic-Archiving Initiative

(now Portico) and the Harvard University Library until 2008. In late

2008, the California Digital Library, Portico and Stanford University

secured Library of Congress funding under the National Digital

Information Infrastructure Preservation Program (NDIIPP) for a

follow-up JHOVE2 project. The project, which ran for two years,

was based on the observation that the original JHOVE, even though

extensively used, had “revealed a number of limitations imposed by

idiosyncrasies of design and implementation” [2]. JHOVE2 was con-

ceptualized to be a complete re-factoring of the software, allowing

for simplified integration, containing streamlined APIs and includ-

ing modules for file formats previously not covered in JHOVE. Two

major conceptual changes in the approach to file format characteri-

zation were the introduction of a more sophisticated data model.

While JHOVE works under the assumption that 1 object = 1 file = 1

format, JHOVE2 allowed for complex objects, shifting the module

to 1 object = m files = n objects. A second change was made by

decoupling file format identification from validation. While JHOVE

conducts file format identification by iteratively calling each exist-

ing module until one reports the file to be valid, JHOVE2 relied on

DROID for initial file format identification. With the move towards

JHOVE2, Harvard University Library’s JHOVE developer Gary Mc-

Gath left, asking for continued custody of the JHOVE code [19]

which he facilitated through a SourceForge project. In the following

seven years, McGath oversaw the release of 11 versions, including

several updates to the PDF-module. In 2013 McGath moved JHOVE

to GitHub, which had by then overtaken SourceForge as the code

platform of choice [24]. In March of 2014, Gary McGath announced

that he could no longer maintain the software by himself [18], lead-

ing to the Open Preservation Foundation (OPF) taking over JHOVE

stewardship and moving the code to the OPF GitHub repository,

where it remains open source under a GNU Lesser General Public

License (LGPL). Since then, the OPF has offered software supporters

and members the chance to steer maintenance and development

activities through the JHOVE product board. With the move to

the OPF GitHub repository, the versioning method has changed.

Minor version numbers are used for production releases (e.g. 1.16),

while odd numbers indicate development releases (e.g. 1.15). Early

9While this statement holds true to the original HUL modules as documented on the
Sourceforge site [21], information about requirements for well-formedness and validity
for the following non-hul modules are unfortunately lacking: ZIP, MP3, WARC, PNG
[26] [25]

OPF development efforts focused on providing a more user-friendly

installer (version 1.12). Version 1.14 saw the introduction of three

new file format modules: WARC, gzip and PNG, and prototype

regression testing tools [25], which are discussed in section 3.

2.3 JHOVE Adoption

While JHOVE2 never achieved wide adoption in the community

[20], [24], and development has been dormant since 2013 [6], JHOVE

remains an important tool in many digital preservation workflows.

In the 2015 OPF community survey JHOVE was - tied with DROID

- ranked by the 132 respondents from around the globe as the most

important tool in digital preservation. This is also reflected in the

download numbers. Starting with a moderate 30 downloads per

week in 2009, the adoption of JHOVE quickly grew reaching 300-

400 downloads per week in early 2013 [24]. Since its first release

until today JHOVE remains a standard tool mentioned in state-

of-the-art system descriptions and best practice reports [15],[32],

[27],[9]. Despite the tool’s popularity neither exhaustive documen-

tation of the validation rules nor accompanying information to the

different error messages exist. Up to today the most comprehensive

documentation is still that provided by the original JSTOR/Harvard

Project in 2008. To address this gap, the OPF set up the “Docu-

ment Interest Group” (DIG)10 in early 2015, which aims to improve

JHOVE and the interpretation of the error messages for textual

data modules such as the PDF-hul. A first step was the creation

of wiki-based documentation of the error messages 11. In 2016 the

OPF DIG conducted the first “JHOVE hack day” [22], leading a large

community effort to catalog the error messages for the different

JHOVE format modules in a systematic way. Recently, a series of

validation tool benchmarks have been conducted, focusing on the

identification aspect of JHOVE in juxtaposition to other tools [27]

or comparing the validation output of JHOVE’s wave [30], TIFF

[29], [16], and JPEG [28] modules to the output of other tools that

can characterise and validate the respective file format families.

2.4 PDF Module

The PDF-hul module has been frequently updated since JHOVE’s

1.0 inception in 2008. With the exception of the 1.6, 1.9 and 1.11

framework releases, every JHOVE release has seen updates to the

PDF module, resulting in new versions of the module. Improve-

ments range from handling of parameters in accordance with the

specification (version 1.3) to optimizations of the parser and the

module’s memory use (version 1.10) [25]. Changes made in the

PDF-module may change the outcome of validation results for a

file. As such, JHOVE’s most recent 1.16 version included PDF-hul

version 1.8, which fixed two major bugs in the code. These had been

present from the start of development, leading to false validation

errors relating to invalid page dictionary objects and improperly

constructed page trees [17]. While a number of fixes have im-

proved PDF/A validation [25], JHOVE has been proven unsuitable

for PDF/A validation [10] [12]. The coverage of PDF versions hasn’t

changed since PDF-hul 1.0; for “plain” PDF, JHOVE support PDF

1.0-1.6. While PDF is backwards compatible, features introduced in

10http://wiki.opf-labs.org/display/Documents/Home.
11http://wiki.opf-labs.org/display/Documents/JHOVE+issues+and+error+messages



iPRES 2017, September 2017, Kyoto, Japan Michelle Lindlar, Yvonne Tunnat, and Carl Wilson

Table 1: Lines and Percentage of code executed by unit tests

per module

Module No. of Lines of Class Module No. of

Files Code Coverage Coverage code lines

in module

(only

*.java files)

AIFF 18 1,253 0.00% 0.00% 1,253

ASCII 1 398 0.00% N/A% N/A

GIF 2 60 0.00% N/A% 60

GZIP 5 611 89.33% 90.44% 611

HTML 41 9,371 0.00% 0.00% 9,371

IFF 4 219 0.00% 38.29% 219

JPEG 9 895 0.00% 0.00% 895

JPEG2000 69 7,633 0.00% 0.00% 7,633

PDF 61 10,581 0.00% 0.00% 10,581

TIFF 61 14,457 0.87% 0.00% 14,457

WAVE 27 3,183 40.62% 6.87% 3,183

XML 9 1,498 0.00% 0.00% 1,498

Totals 309 50,705 N/A 2.97% N/A

newer versions are currently not supported by JHOVE. The com-

plexity of the module reflects the complexity of the PDF format

itself. All Adobe PDF specifications are freely available via the com-

pany’s website12, however, as described in section 2.1, ambiguities

in the specifications have lead to differing interpretations of the

file format’s syntactical and semantic restrictions. This complexity

resulted in the PDF module consuming significant resources to

complete13 [7], and is also reflected in the continuing work on the

module as described above.

But what does the module base the validation outcome on? Sec-

tion 2.1 described the general two-tiered conformance approach

taken by JHOVE. While the differentiation between well-formed

and valid is rather straight-forward for well specified file formats

such as TIFF, the situation is unfortunately more complex for the

PDF file format. The module description itself states that a PDF is

considered well-formed if it meets the criteria defined in Chapter

3 of the PDF Reference, breaking this down further into the fol-

lowing requirements [13]: “In general, a file is well-formed if it

has a header:%PDF-m.n; a body consisting of well-formed objects;

a cross-reference table; and a trailer defining the cross-reference

table size, and an indirect reference to the document catalog dic-

tionary, and ending with: %%EOF”. Unfortunately this statement

remains vague, concrete rules breaking these high-level require-

ments down to e.g. dictionary or object level are missing. The

PDF-module documentation carries on stating that in addition to

further requirements, well-formedness is a prerequisite for validity

12Adobe Developer Connection 2017 (http://www.adobe.com/devnet/pdf/pdf
reference.html) for current version, Adobe Developer Connection Archives (http:
//www.adobe.com/devnet/pdf/pdf reference archive.html) for previous file format
versions
13It may surprise that the original JHOVE developers stated that the complexity of
the PDF-module was superseded by the HTML-module, elaborating that while other
modules were designed to terminate the validation process at the first error, the HTML
module typically encountered so many errors that it had to be designed to recover
from errors and continue [7].

[13]. Regarding limitations of the validation by the modle, the PDF-

hul documentation only states that data within content streams

as well as encrypted data is not validated. While these criteria

may seem straight-forward, in reality they include thousands of

possibilities. Furthermore, while Adobe’s specification included

the “well-formedness” terminology [4], the ISO standard replaced

this with “conformance”14 [11]. The ISO standard clearly states,

that it does not specify “methods for validating the conformance of

PDF files”, carrying on, however, by describing that “conforming

PDF files shall adhere to all requirements of the ISO 32000-1 speci-

fication and a conforming file is not obligated to use any feature

other than those explicitly required by ISO 32000-1.” [11]. With

5.471 occurrences of the word “shall” as the ISO verbal form for a

requirement and no clear differentiation between well-formed and

valid, achieving rule-based conformance checking remains a lofty

goal. Nevertheless, is the most suitable point of reference for what

is syntactically and structural valid and what is not. Due to the

complexity of both the file format and module, it should come as no

surprise that validation errors like those recently fixed in JHOVE

1.16 went unnoticed for many years. However, when relying on a

validation tool for digital preservation decision-making, the tool’s

output must be correct and complete. Ideally, a test routine exists,

which checks the tool’s output against a ground-truth for every

new release. While such a ground-truth needs to exist on both,

well-formedness and validation levels, the authors have limited the

scope to criteria determining well-formedness of the object.

3 METHOD

In this section we briefly introduce software testing methods. In

particular, we are highlighting the use of test corpora to measure

code coverage as a form of software testing. We conclude this

section with a brief description of the process used to build the

light-weight test set put forth in this paper.

3.1 Software testing

JHOVE is a large established code base, currently comprising over

500 Java files and 100,000 lines of code. There are modules that

validate files against twelve format specifications, each requiring its

own specialist knowledge. Good automated testing is the only way

to ensure that a large software project functions as expected, but

how do you ascertain how well a piece of software has been tested?

Before addressing JHOVE testing we define a few key software

testing terms: The term code coverage is used to express how much

of a code base has been tested. It can be measured empirically for

a given test scenario by measuring how many lines of code are

executed when you run it. You then divide this by the number of

lines of code in the project to give a percentage figure. This task is

carried out by automated coverage tools used by software testers

and developers.

Testing can be carried out in different ways, one of the most

effective forms is known as unit testing. These are small, discrete

tests written by programmers when developing and fixing code.

They are usually executed automatically every time that the code is

14Adobe: “The rules described here are sufficient to produce a well-formed PDF file”
became ISO: “The rules described here are sufficient to produce a basic conforming
PDF file”



A PDF Test-Set for Well-Formedness Validation in JHOVE - The Good, the Bad and the Ugly iPRES 2017, September 2017, Kyoto, Japan

Figure 2: Methodology for creating and using the test set

compiled. These test the smallest components, usually a few lines

of code, that make up a software package.

Integration testing is an alternative, complementary approach to

unit testing. Rather than test low-level units, integration testing

focuses on larger software components, including the delivered

software. These tests can often take a long time to run so aren’t run

for every code change. Integration tests are usually run as a final

test before delivering release candidate software.

Black box testing describes an approach to testing that concerns

itself solely with software functionality and ignores the internal

details. Nearly all software testing above the unit testing level is

carried out as black box testing.

3.2 Testing JHOVE

Historically, JHOVE hasn’t had a rigorous, public testing policy.

There are very few unit tests, the unit testing code coverage figures

for the JHOVE modules as of v1.16 are shown in Table 115.

For each module two coverage figures are given, each measures

the percentage of code that’s executed by unit tests, the first for

the module control class the other for the supporting classes. The

test coverage was measured using the Jacoco16 software and its

accompanying Maven17 reporting plugins. Overall, there’s less

than 4% coverage of the codebase. Writing unit tests for 100,000

lines of code is at least 2 person years of effort and isn’t practical

given the development resources available to the project. Clearly

another approach is needed to establish confidence in JHOVE’s

results.

3.3 Using Test Corpora and Measuring

Coverage

One method suited to testing JHOVE is to create a corpus of ground

truth test data designed to test the modules functionality. A good

test should be atomic if possible, examining the codes handling of

a specific validation issue. One large, valid PDF document might

execute a high percentage of the code base without providing any

insight into the manner in which JHOVE deals with validation is-

sues at all. Currently two data sets for testing exist: The first dataset

is comprised of example files that accompany the JHOVE code base.

These have presumably been used by developers to test that the

modules were working, without providing a formal, rigorous test

corpus. The regression testing suite that the OPF is currently de-

veloping uses this data and compares the XML output of different

15See CodeCov results page for full coverage results: https://codecov.io/
gh/openpreserve/jhove/tree/0093b7dd74d3d7582eff0d8f2e22eb7a89f5befd/
jhove-modules/src/main/java/edu/harvard/hul/ois/jhove/module
16http://www.eclemma.org/jacoco/
17http://www.eclemma.org/jacoco/trunk/doc/maven.html

versions of JHOVE to ensure that the results haven’t changed. This

is typical black box testing, treating the software as a unit that

takes input files and produces XML output without worrying how

the software does this. This test set comprises approximately 80

files that cover the PDF, TIFF, HTML, GIF, JPEG, JPEG 2000, XML

and ASCII modules. The other test set is currently being assembled

as a community effort. The aim is to gather a set of test files that

between them generate every one of JHOVE’s 153 PDF validation

errors. First efforts, undertaken as part of the OPF DIG group and

the JHOVE hack day have put forth 44 files. However, as these files

come from institutions’ productive archival workflows, there are

some associated problems: About a third of them are subject to

access regulations and may not be shared publicly. Secondly, as

these are “real-world” examples, the PDF files are typically large

and complex, making it hard to understand which specific part of

the digital object triggered a validation rule. A ground truth test

set is currently lacking.

3.4 Building a test corpus

In order to conduct straightforward black-box functional tests we

introduce a set of PDFs built specifically to test the requirements of

well-formedness. We limit ourselves to well-formedness, as it forms

the prerequisite for a valid file. The JHOVE well-formed statement

is split into the requirements for the structural sections, shown in

Figure 1: header (section 4.1), body (section 4.2), cross-reference

table (section 4.3) and trailer (section 4.4). For each section, the

JHOVE requirement - if available - forms the starting point of

the process shown in Figure 2. In a second step, the ISO 32000-

1:2008 standard is checked to transform the high-level criterion into

individual requirements / test cases. These requirements are then

implemented as a test file, which is validated using JHOVE and

rendered with Adobe Acrobat Professional. To produce atomic tests

against syntactical file format requirements, a minimal well-formed

and valid PDF (“Hello World.pdf”) was created and used as the

basis for all other test files. This file consists of a single page which

includes one font definition as a resource and a single text stream

as a content. The graph including respective object Ids is shown in

Figure 3. Information on test cases and accompanying test results

are captured in a google spreadsheet.

4 TEST CORPUS

This synthetic test corpus consists of 90 files, which are available on

the JHOVE github repository [25].The test set contains the minimal

PDF file (minmal test.pdf) given as an example in section 2.1, the

starter file “Hello World.pdf” as well as 88 test cases which are

derivations of “Hello World.pdf”. Test cases were created using the



iPRES 2017, September 2017, Kyoto, Japan Michelle Lindlar, Yvonne Tunnat, and Carl Wilson

Figure 3: Graph and according PDF object Ids for

Hello World.pdf file

process described in section 3.2. To allow files within the test corpus

data set to be referenced, we introduce a naming scheme for the test

files and cases. The scheme is based on a scalable ontology, which

follows the basic PDF structure as shown in Figure 1. The main

four sections are numbered with the body section (T02) branching

off in separate subsections for possible object types. For this paper,

the object types document catalog (T02-01), page tree node (T02-

02), page node (T02-03), page resource (T02-04) and stream object

(T02-05) are analyzed further. While different types of objects are

possible for page resources and stream objects, we only focus on

font (T02-04-01) and text respectively. Each test case is numbered

according to the section in which the deviation is introduced in

(Txx-xx-xx), followed by a 3 digit number ( xxx). In addition to the

test case ID, the file names contain a brief description of the feature

tested, e.g. “T001 header invalid-major-version.pdf”. All of the test

files are listed in a google spreadsheet18. The created test corpus

has been made available on GitHub19.

4.1 PDF Header

The PDF-hul documentation prescribes that the PDF Header con-

sists of the first line of the file whichmust contain the five characters

“%PDF-”, followed by a version number. According to ISO32000-

1:2008, the version number is of the form 1.N, where N is a digit

between 0 and 7 [11] - Adobe’s documentation states simply that

the syntax is %PDF-M.m., where M is the major and m the minor

version [3]. In addition to the general syntax, each Adobe specifica-

tion explicitly names the header relevant for the respective format

version, e.g. %PDF-1.6 for PDF 1.6 [4]. Beginning with PDF 1.4 the

version may also be included in the document’s catalog dictionary.

If present, it shall be used instead of the version in the header. While

this information is relevant for adequate identification of the file

format version, it does not replace the structural requirement of

the header.

Test cases are based on the syntax requirement as well as by using

plausible version numbers. Deviations from the syntax are added

to the first 5 chars %PDF- as well as to the version notation M.m.

An additional test case is formed by removing the header. In total 7

18Lindlar, Tunnat, Wilson: Test corpus description and outcome - available
at https://docs.google.com/spreadsheets/d/1SWa2MtiSUQDVmlBvGb2a-b zn7SmARv
CERXlFFDED0/edit?usp=sharing
19https://github.com/openpreserve/jhove/tree/ipres/pdf-test-all/test-root/corpora/
ipres-paper-pdfs/modules/PDF-hul

test cases were created for header deviations, 1 missing its header

(T01 007), 2 containing invalid major / minor versions (T01 001 -

002) and 4 with syntactical header errors (T01 003 - 006)./newline

The file with a missing header and the 4 objects with syntactical er-

rors were successfully detected by JHOVE as not being well-formed.

For all test objects considered Not well-formed, PDF-hul returned

the error “No PDF header”. It is debatable whether this error de-

scription is correct as the header does exist but contains invalid

information. JHOVE did not handle major and minor versions

test cases as well. Instead of either limiting the possible version

entries to the profiles the module supports or to all possible combi-

nations of M.m, JHOVE only checks against M=1. This leads to the

non-existing version 1.9 being accepted as well-formed and valid

(T01 002).

4.2 PDF Body Well-formed objects

The JHOVE PDF-hul module requires that “the file has a body,

consisting of well-formed objects”. PDF supports five basic and

three compound objects: Integers / real numbers; strings which

must be enclosed in parentheses; names, which are introduced by a

forward slash; boolean values; the null object, denoted by keyword

null; arrays consisting of an ordered listing of objects, e.g., [1 0 0 0];

dictionaries and streams [33]. Objects are linked to each other via

indirect references. Additionally, PDFs are divided into nodes as

objects (obj). The content of these nodes, such as a page tree node,

are regulated in the standard, perscribing required and optional

objects within. This paper focuses on the five PDF node structures

required to construct a minimal PDF as shown in Figure 3: the

document catalog (4.2.1), the page tree node (4.2.2), the page node

(4.2.3), the page resource node containing the resource font (4.2.4)

and the stream node containing text (4.2.5).

4.2.1 Document catalog. The JHOVE well-formedness descrip-

tion only mentions the document catalog in conjunction with the

trailer (see 4.4), which must contain an indirect reference to the

document catalog. However, the document catalog is the root of

the PDF’s object hierarchy graph (see Figure 3), containing refer-

ences to all other objects which define the document’s content,

outline, threads and attributes. The document catalog can also con-

tain information about how the document shall be displayed, e.g.,

defining a default page other than page 1 to first show when the file

is rendered. While a number of key pairs are possible within the

catalog dictionary, only two are required: Type with value Catalog,

which defines the object type of the dictionary, and Pages, which

contains an indirect reference to the page tree node [11]./newline

The test cases present a missing or inaccessible document catalog

(T02-01 001 - 002), a missing or incorrectly defined Pages indirect

object (T02-01 003 - 004) and a missing Type key value pair (T02-

01 005 - 007)./newline Analyzing the results of running JHOVE

across the test set revealed some troubling behavior. While JHOVE

correctly recognizes when the document catalog is removed com-

pletely, it does not appear to cross-check the indirect reference in

the trailer and the actual object number of the document catalog.

While the file (T02-01 002) is not well-formed according to the stan-

dard and cannot be rendered by Adobe Acrobat, JHOVE reports the

file as being well-formed and valid. The suspicion that referenced

object numbers are not cross-checked against the target objects is



A PDF Test-Set for Well-Formedness Validation in JHOVE - The Good, the Bad and the Ugly iPRES 2017, September 2017, Kyoto, Japan

further confirmed by the test case containing an incorrect indirect

reference in the Pages value (T02-01 004). Here, the file is also

flagged as well-formed and valid by JHOVE but cannot be rendered

by Adobe Acrobat, as it fails to locate the page tree node needed

to display the pages. Similarly, the requirement that the value for

Type must be Catalog is not checked. Invalid entries are considered

Well-formed and valid by JHOVE. However, as opposed to the other

false negatives, which could not be rendered by the reader software,

the test file with an invalid Type key value (T02-01 006) renders

correctly and without a warning.

While the validation against the values result in incorrect outcomes,

the routines implemented in JHOVE do correctly check the exis-

tence of the required key values Pages and Type - the absence of

which results in objects being reported as Not well-formed with

“Invalid object definition” error messages (T02-01 003, 005, 007).

4.2.2 Page tree node. While the JHOVE well-formedness re-

quirements do not mention the page tree object, the object is re-

quired in order to interpret and access the file’s content correctly.

Every PDF object has at least one page tree node, which forms the

basis of the hierarchical structure of page leaf nodes and/or further

page tree nodes. Required information within the page tree node

dictionary is the dictionary Name with required value Pages, the

number of children the node has (further page tree nodes or pages)

given in the Count key value pair, and lastly an array of indirect

objects of the children in the Kids key value pair. If the page tree

node is not the root page tree node, i.e., not the first page tree in

the document, a Parent key value entry is also required. As our

lightweight test set only contains a single page tree node, this value

is not required and is not checked within the test set.

The test cases present a missing page tree node (T02-02 001), miss-

ing or malformed Type (T02-02 006, T02-02 009) and Count (T02-

02 007 - 008) key value pairs and a missing or malformed Kids array

(T02-02 003 - 005).

The result of running JHOVE across this test set is similar to that

of the previous section - a missing page tree node is detected by

JHOVE, resulting in a Not well-formed object and an error message

stating “Invalid object definition”. The same result - Not well-formed

and “Invalid object definition” - is obtained when validating the

test cases with missing required keys Type (T02-02 006) and Count

(T02-02 008). In both cases the file renders correctly in Adobe

reader, however, Adobe attempts to fix the error and prompts the

user to save the changes upon closing the file. As in the case of the

document catalog key value pairs, the values for Type and Count

do not appear to be checked by JHOVE - invalid values such as an

incorrect integer value for Count result in well-formed and valid

files according to JHOVE despite the fact that they clearly violate

the requirements defined in the standard.

In the case of the array Kids, values appear to be at least partially

checked, invalid indirect objects such as a reference to self (T02-

02 002) and no kids (T02-02 005) or a combination of existing and

non-existent children (T02-02 003) are caught correctly, resulting in

a not-well formed outcome and error messages such as “Excessive

depth or infinite recursion in page tree structure” for self-reference

or “Invalid object definition” for missing kids. The test case con-

taining only one, non-existent object as the only array entry for

the Kids key (T02-02 004) was interesting, as it resulted in a well-

formed, but not valid outcome. It is unclear, why this is considered

well-formed as opposed to, e.g., the combination of valid and invalid

array entries found in test case T02-02 003 which are flagged as not

well-formed by JHOVE.

4.2.3 Page node. No specific requirements concerning page ob-

jects are given in the JHOVE PDF-module description, however,

per standard a PDF file must have at last one page object. The page

object dictionary can contain 30 different key pair values, but only

4 of them are required: Type, Parent, MediaBox and Resources. Me-

diaBox and Resources can be inherited from ancestor nodes in the

page tree. Other keys are only required under specific conditions,

e.g., StructParents is required, if the PDF contains structural content

items. It’s interesting to note that Contents is not a required key

value pair. If no Content object is referenced, the page is simply

blank. As our sample file contains one Contents object, we are test-

ing the Contents reference despite the fact that it is only an optional

key.

The test cases present a missing page object (T02-03 006), and

missing or malformed Type (T02-03 001, T02-03 002), Parent (T02-

03 003 - 005), Resources (T02-03 008, T02-03 012), MediaBox (T02-

03 008 - 009) and Contents (T02-03 010 - 011) key value pairs.

As in the analysis for the other body test cases, a missing node (T02-

03 006) as well as missing key value pairs (T02-03 001, T02-03 003,

T02-03 008, T02-03 012) result in Not well-formed files with “Invalid

Object definition” errors. This includes the test cases where the Con-

tents key value pair is missing (T02-03 010) - an interesting result,

considering that the Contents key value pair is optional according

to the standard. An absence of Contents should therefore result in

an invalid, but not directly in a not-well formed status. Moreover,

an invalid value entry for Contents results in a well-formed, but

not valid output (T02-03-011), which is surprising as in previous

dictionary cases plausibility and correctness of values was rarely

checked and never lead to well-formed, but not valid outputs. The

respective test file cannot be rendered by Adobe Acrobat and leads

to the rendering application crashing - clearly not the result we

expected for a well-formed but not valid object. Indirect values

for Parent (T02-03 004) and Resources (T02-03 007) go unnoticed,

resulting inWell-formed and valid outputs. Checking against incon-

sistencies for the Type values (T02-03 002) lead to an interesting

discovery. After having changed the Type value from the required

Pages to Catalog, JHOVE returned the file as Not well-formed. This

was surprising, as the previous test cases had returned invalid en-

tries for the Type key value pair as well-formed and valid. Further

analysis revealed that when the Type was then changed to Font and

re-validated the outcome was Well-formed and valid, even though

the value was still wrong. This leads to the assumption that some

but not all values for Type are checked and the value Catalog always

leads to further analysis by the software. Further test cases which

were handled correctly by JHOVE’s validation routine and were

identified as Not well-formed are a wrong object type for the Parent

value, which expects a single indirect reference (T02-03 005) and

the wrong number of parameters for the MediaBox.

4.2.4 Page Resource - Font. Well-formedness criteria for page

resources in general and fonts in particular are not addressed by the

description of JHOVE well-formedness criteria. As per standard,



iPRES 2017, September 2017, Kyoto, Japan Michelle Lindlar, Yvonne Tunnat, and Carl Wilson

resources for a page, such as images or font, may be described

in resource dictionaries which can be included in dedicated page

resource objects. Alternatively, resources may also be directly

described within content stream objects. This paper only briefly

examines page resources for fonts. The use of fonts in PDF is a

particularly complex subject [5], hence this is only a high level

analysis focusing on font dictionaries and associated data struc-

tures. This includes a look at the information a conforming reader

requires to interpret the text and position the glyphs correctly. Re-

quired key value pairs in the font dictionary are Type, Basefont

and Subtype. The test cases present a missing or invalid resource

object (T02-04-01 003, T02-04-01 004), a missing or malformed

Subtype (T02-04-01 005, T02-04-01 006) and missing BaseFont (T02-

04-01 002, T02-04-01 006) key value pairs. As is the case with other

tests, a missing dictionary Type key value pair (T02-04-01 003) re-

sulted in a not well-formed JHOVE result, while an invalid value

- in this case Page instead of the expected Font (T02-04-01 004) -

produces a well-formed and valid result. The Subtype key identi-

fies the font type, ISO32000 lists the following valid values: Type0,

Type1, MMType1, Type3, TrueType, CIDFontType0 and CIDFontType2.

A missing SubType key value pair (T02-04-01-005) from the font

dictionary results in an unrenderable file, which JHOVE correctly

catches as Not well-formed with an “invalid object definition error”.

A more distinct error message indicating the magnitude of the error

would be helpful here. A wrong value for SubType (T02-04-01 006)

unfortunately goes unnoticed - resulting in a well-formed and valid

JHOVE result. The BaseFont key contains the actual font - for Type1

fonts this is typically the name it is known by in the respective

font program. A missing BaseFont (T02-04-01 001) results in Adobe

being unable to render any text which uses the font. JHOVE catches

this error as a well-formedness violation. Again, the error message

is “invalid object definition” as well as an additional “no document

catalog dictionary” error. This appears to be a resulting downstream

error in parsing dictionaries and is misleading here. A BaseFont

with the wrong value (T02-04-01 002) also results in a “no docu-

ment catalog dictionary” error, which is again misleading. Adobe

Reader renders the text using an alternative, default font.

4.2.5 Stream Objects - Text. JHOVE states no specific require-

ments for stream objects. Streams are used to store binary data or

text to be displayed on a page. For this paper, we only examine a

simple, uncompressed text stream. As per ISO standard, the require-

ment for printing text on page is a Stream dictionary including the

Length key value with the number of bytes between the stream and

the endstream keywords. The stream dictionary must be followed by

a descriptor stating the position of the text on the page, a beginning

text object marker (BT ), operators to choose the text font (Tf ) and

size, the text itself, the font show operator (Tj), the end text marker

(ET ) and the endstream keyword. The standard mandates that no

extra bytes other than white space are allowed between the end-

stream and the endobj markers. The test cases check the presence

of the required text operators (T02-05-01 001 - 008, T02-05-01 012),

correct syntax of the text object (T02-05-01 009 - 011), missing key-

words stream (T02-05-01 13) and endstream (T02-05-01 14), missing

or invalid Length key value pair (T02-05-01 015, T02-05-01 016)

and extra bytes between endstream and endobj keywords (T02-05-

01 017). Running JHOVE across the test files showed that all text

operators are checked by the PDF-module. The absence of the

operators is detected, resulting in a Not well-formed output (T02-05-

01 001 - 008, T02-05-01 012). As these errors typically result in the

rendering application being unable to open the file, it is particularly

important that JHOVE detects them. However, the accompanying

error message for the test cases: “No document catalog dictionary”,

appears to be a down-stream error and does not indicate that the

problem is in the stream object or more specifically in a missing text

operator, which would be important information for the user. The

PDF-module correctly detects missing stream (T02-05-01 13) and

endstream (T02-05-01 14) keywords and missing or invalid Length

key value pairs (T02-05-01 015, T02-05-01 016). Validation issues

were detected when processing the actual text streams. String ob-

jects can be either encoded as literal strings enclosed in parentheses,

or as hexadecimal streams enclosed in angle brackets [11]. Our

lightweight test set includes a literal string. However, missing open-

ing or closing parentheses (T02-05-01 009, T02-05-01 010) as well

as a substitution with brackets (T02-05-01 011) goes unnoticed by

JHOVE, returning a Well-formed and valid result. This is especially

grave as the reader fails to render the files, showing the message

“An error exists on this page. Acrobat may not display the page

correctly. Please contact the person who created the PDF document

to correct the problem”.

4.3 Cross reference table

The cross reference table enables random access to the various

objects contained in a PDF and is an essential element of any PDF

file. JHOVE acknowledges this, the mandatory presence of the cross

reference table is mentioned in the well-formedness conformity

statement. However, as with other objects, JHOVE gives no further

requirements for the table. While conforming PDF implementations

may divide information between multiple cross-references streams,

cross-reference sections and cross-reference tables, this paper only

examines a lightweight PDF with a single cross-reference table.

Per standard, the cross-reference section must start with the xref

keyword. If the file only contains one table and has never been

updated, as is the case with our test file, the second line should

start with 0 and include a second number stating the number of

entries in the table - in our case 6. Finally, the table contains one

entry for each object. Each entry is exactly 20 bytes in length and

consists of the off-set (10-digit), the generation number (5-digit)

and a keyword indicating whether the object is in use (n) or free

(f ). [11]

The test cases present a missing cross-reference table (T03 001),

missing xref keyword (T03 002), missing or invalid number of

entries (T03 003, T03 004), missing or invalid offsets (T03 006 - 008),

invalid entry keywords (T03 009) and invalid generation numbers

(T03 010).

The test files for missing cross reference table and xref keyword,

(T03 001, 002) as well as for an invalid number of entries (T03 003

- 005) were detected correctly as Not well-formed. An interesting

outcome in this context was a software bug when performing the

test against missing number of entries (T03 003), producing the

following error: “edu.harvard.hul.ois.jhove.module.pdf.Keyword

cannot be cast to edu.harvard.hul.ois.jhove.module.pdf.Numeric”.

This is a Java exception thrown when the application has tried to



A PDF Test-Set for Well-Formedness Validation in JHOVE - The Good, the Bad and the Ugly iPRES 2017, September 2017, Kyoto, Japan

perform an undefined data conversion.

Only one test case for the cross-reference table led to an incorrect

validation result, (T03 010) - here, an invalid generation number

for an entry was proclaimed asWell-formed and valid by JHOVE.

4.4 PDF Trailer

The PDF-module description states that to be well-formed, a file

must have “a trailer defining the cross-reference table size with an

indirect reference to the document catalog dictionary, and ending

with: %%EOF” [13]. The PDF standard is more specific in its require-

ments, stating that the trailer must start with the trailer dictionary,

consisting of the trailer keyword and key-value pairs enclosed in

double angle brackets. Two key value pairs are required for all

PDFs: Size of type integer, which holds the total number of entries

in the cross-reference table, and Root of type dictionary, which

contains the indirect reference to the catalog dictionary or root

object of the PDF. Other key value pairs are reserved for particular

PDF properties, such as Encrypt and ID for encrypted documents,

as well as Prev for objects with more than one cross-ref section.

The trailer dictionary is followed by the startxref keyword and

the byte offset counting from the beginning of the file to the last

cross-reference section. The trailer and the object closes with the

end-of-file marker %%EOF [11].

For the test cases, The JHOVE well-formed criteria stated above

are broken down into the existence of a properly formed trailer

(T04 008 - 010), the existence and validity of the mandatory key

value pairs Size (T04 015, T04 016) and Root (T04 011 - 014). The

last line of a PDF file contains only the end-of-file-marker %%EOF.

As PDF files are typically read starting with the trailer, the EOF-

marker is an essential keyword, indeed most applications will not

parse or render the file if it is missing [3]. The test set contains a

number of invalid variations of the %%EOF tag (T04 001 - 007).

While not explicitly mentioned in JHOVE’s conformance require-

ments, the offset of the cross-reference section prefaced by the

startxref keyword is an essential part of the trailer. Because of this,

offset and keyword are also included in the test set (T04 018 - 019).

With one exception, every test case pertaining to the trailer dictio-

nary or the cross-reference table byte offset produced the expected

status message Not well-formed. The exception was an unexpected

program termination in the test case which omitted the closing

brackets. It seems as if the module gets stuck in an endless loop.

Another unclear case were two error messages which appear to be

incomplete (“4” and “Null”). One arose in the case of an incorrect

value of type integer given in Size, i.e., not the correct size of the

cross-reference table entries. Here, one of the errors simply returns

the value “4”. Further experiments have shown if the number of

entries does not equal the value of Size, the error message returns

the value stated in the Size key value pair. This should be replaced

with a more detailed message. The “Null” error appears to have sim-

ilar origins, as it was produced by the test case with a missing Size

entry. Two of the test cases produced validation errors rather than

well-formedness violations: “Size entry missing in trailer dictio-

nary” and “Root entry missing in trailer dictionary”. While both test

cases result in a Not well-formed status due to a subsequent error

(“No document catalog dictionary”), the missing entries should be

reason enough to fail the syntactical check, as the standard clearly

states that Size and Root keys are mandatory elements of the trailer

dictionary. Further dictionary errors thrown, such as “Malformed

indirect object reference” or “Improperly nested dictionary delim-

iters” are generic to all dictionaries and also appear in other objects.

The main problem found when validating the %%EOF tag test cases

was that JHOVE is tolerant towards data being present after the

%%EOF tag. Following incremental updates a PDF file might con-

tain several %%EOF tags, still the last line must be %%EOF. The test

case containing junk data after the tag (T04 005) passed JHOVE

validation as well-formed and valid. Furthermore, the ISO standard

states that the %%EOF tag should be present in the last line of the

file. JHOVE validation simply follows the requirement that %%EOF

is the last string in the file, regardless of it being on a line of its

own (T04 001), resulting in a well-formed and valid file.

5 DISCUSSION

As part of the work presented in this paper we have developed a

light-weight test set for JHOVE’s PDF validation routine against

well-formedness requirements derived from the ISO 32000-1:2008

standard for PDF. As presented in section 1, our aim has been to:

(1) establish a ground truth for well-formedness criteria

(2) test the JHOVE software against that ground truth; and

(3) improve automated regression testing

Within this section we will briefly discuss if and how the test set

meets these goals.

5.1 Establishing a ground truth

The JHOVE PDF-module’s description of the requirements which

need to be fulfilled to be considered well-formed are fairly vague.

Particularly the definition of what comprises a well-formed body is

high level. Neither a ground truth test corpus nor a clear overview

of the validation criteria enforced by the JHOVE PDF-module are

available.

In this paper, we have checked the criteria presented in the PDF-

module documentation against the concrete requirements stated

in the PDF ISO 32000 standard. Using a light-weight test object,

consisting of a minimal set of structural objects, we have produced

ground truth data for a small sub-set of criteria for the validation

against structural and syntactical requirements. As the ISO stan-

dard does not include a differentiation between well-formed and

valid, we have defined well-formed as the required syntactical and

structural aspects of the PDF graph in general and the object’s used

within in particular. This approach shows that the line between

well-formed and valid for PDF is unfortunately by no means as

straightforward as the XML example included in section 2.1. This

will be especially challengingwhen thework described here is taken

forward, looking at the optional structural elements of PDF, such as

object requirements for linearized PDFs, which have fixed require-

ments in themselves. Is a linearized PDF only well-formed when

all requirements for linearization are met? Or is any requirement

violation occurring in an optional structural part only a violation

of validity?

5.2 Testing JHOVE against ground truth

The test cases included in this paper have shown clearly how error-

tolerant rendering software can be. Files syntactically wrong at



iPRES 2017, September 2017, Kyoto, Japan Michelle Lindlar, Yvonne Tunnat, and Carl Wilson

very elementary levels may happily be rendered by tools such as

Adobe Acrobat without a warning. However, we’ve also produced

examples where the reader failed to render objects which JHOVE

deemed to be well-formed and valid, further underlining the in-

valuable asset of a ground truth test set. By running the test cases

against the JHOVE PDF-module, we have discovered a number

of inconsistencies between expected outcome for a test-case and

the de-facto validation result returned by JHOVE 1.16 / PDF-hul

1.8. These inconsistencies are being raised as issues on the GitHub

project site where they will be picked up by the JHOVE maintain-

ers. As a first step, we have opened issues on the JHOVE GitHub

repository for 9 of the discovered inconsistencies:

issue #207: PDF version checking incorrect

issue #208: Inconsistent catalog indirect reference and object num-

ber

issue #209: Inconsistent Pages indirect reference and object number

issue #210: Value for Type in Document Catalog not validated

issue #211: Indirect reference to not existing object in page tree

node Kids array results in well-formed and valid

issue #212: Value for Type in Page Tree Node not validated

issue #213: Consistency between /Parent and Kids for Page Tree

Node and Page Object not checked

issue #214: Paranthesis around literal strings are not checked

issue #215: Error message - JHOVE expects integer, gets string in

cross-reference stream with missing value

5.3 Improving test coverage and regression

testing

A corpus based testing methodology has been described in section

3.2. In this section we examine the utility of the test set produced

with this paper as a test corpus for JHOVE PDF validation. This was

tested by measuring and analyzing the coverage for the individual

files and the test set as a whole.

The “hello world.pdf” seed file covered 36% of the code in the PDF

module’s control class and 26% of the module code. Examining

the coverage figures reveals that when the problems presented

in the test files were undetected by JHOVE the coverage figures

for the test are identical to the seed file. That makes sense as the

application found no problems in the file so continued processing

the file resulting in more of the code being executed. Because of this

we’ve omitted these results from our summary as they obscure the

coverage figures for the discrete tests that fail as expected. Table 2

shows the coverage figures produced by running JHOVE over the

test classes described in this document.

Regarding these test figures, it’s worth noting the manner that

the combined coverage figures are never higher than around 36%

for the controlling class and 26% for the module. Furthermore these

figures are identical to the coverage generated by the seed file. This

means that many of the tests are exercising the same areas of the

code base reflecting similarities in the test cases themselves. It’s

important not to get too carried away with test coverage in this

respect. The real use of these test file is not the amount of code they

execute but in which parts of the code they execute. Synthetic test

corpora can be crafted to exercise specific sections of the code base.

Initially this can be done by studying JHOVE’s validation criteria

and the PDF standards as is the case for the work presented here.

Table 2: Class and module coverage of test case files pre-

sented in this paper

Test File Class Module

Coverage Coverage

T01 Header tests 9% 17%

T02-01 Document Catalog tests 21% 18%

T02-02 Page Tree tests 21% 20%

T02-03 Page Object tests 26% 22%

T02-04 Resources tests 19% 18%

T02-05 Stream tests 19% 18%

T03 Cross Reference tests 28% 24%

T04 Trailer tests 19% 20%

All Test Files 36% 26%

Table 3: Module coverage of corpus presented in this paper

compared to other corpora

Corpus All Modules PDF Module

coverage Coverage

Synthetic corpus for this paper 13% 26%

JHOVE example files 51% 50%

JHOVE error corpus 18% 49%

All Test corpora 54% 58%

As test coverage increases it’s possible to see which areas of the

code remain untested and use this as another guide when creating

test files.

Even after JHOVE validation has been tested and verified to function

as expected the test corpus has a vital role in ensuring that this

remains the case. The data set can be used to regression test new

releases of JHOVE tomake sure that fixed bugs are not inadvertently

reintroduced as new development takes place. Finally we’ll examine

coverage figures for the two other test data sets introduced in

section 3.3 - the intital JHOVE example files and the OPF JHOVE

error corpus - and compare the figures to this corpus for context.

Due to the complexity of the files within the other corpora, they

produce greater coverage of the PDF module’s code. However, the

high coverage comes as a price: due to their complexity, they are

also of less use in identifying and fixing problems. For complex,

“real-world” files it is much harder to predict which areas of the

code they will test, in turn making it harder to diagnose problems

as there’s more code to analyze. Furthermore, many bugs can be

caused by interactions between features that weren’t properly con-

sidered when developing the software. In summary synthetic test

files are ideal for testing how the software deals with the individual

elements of the specification. Real world files are excellent candi-

dates for testing software’s function when presented with more

complex files as well as measuring performance but only after con-

fidence in the software has been established through formal testing

using synthetic test data.



A PDF Test-Set for Well-Formedness Validation in JHOVE - The Good, the Bad and the Ugly iPRES 2017, September 2017, Kyoto, Japan

6 SUMMARY

In the work presented in this paper, the authors have created a

light-weight test set for the validation of PDFs at the structural

well-formedness level. The test set consists of 90 files and 88 test

cases and is publicly available via the JHOVE GitHub repository20.

Additionally, the outcome of the validation and rendering tests

described in this paper as well as the detailed figures for the code

coverage of the test set in regards to the JHOVE PDF-module are

described in a spreadsheet available online21.

The authors have shown how the test corpus can be used to serve

three purposes: to establish a ground truth for what is not well-

formed, to test the JHOVE software against that ground truth and

lastly to improve automated regression testing. Inconsistencies

discovered in running the ground truth data against JHOVE are

being fed back into the development process via GitHub issues. Fur-

thermore, the test set and process will be shared with the JHOVE

community, hoping to stimulate discussion around the methodol-

ogy used and triggering further efforts in extending the test data to

cover more features of PDF files and other format modules.

If we want the software we use to be fit for the lofty, long term

goals that the digital preservation community aspires to it needs to

be tested thoroughly. This testing needs to be public and demon-

stratively complete, and who better to make sure that this is the

case than the community who use the software. Only when this

testing is in place will the JHOVE status ofWell-formed and valid

carry the lifetime guarantee we want it to.

REFERENCES
[1] Stephen Abrams. 2007. Instalment on “File Formats”. DCCDigital CurationManual.

Technical Report. DCC Digital Curation Centre. https://www.era.lib.ed.ac.uk/
bitstream/handle/1842/3351/Abrams%20file-formats.pdf

[2] Stephen Abrams, Sheila Morrissey, and Tom Cramer. 2009. “What? So What”:
The Next-Generation JHOVE2 Architecture for Format-Aware Characterization.
International Journal of Digital Curation 4, 3 (2009), 123–136. http://www.ijdc.
net/index.php/ijdc/article/view/139

[3] Adobe Systems Incorporated. 2001. PDF reference : Adobe portable docu-
ment format version 1.4 / Adobe Systems Incorporated. - 3rd ed. ADDISON-
WESLEY. http://www.adobe.com/content/dam/Adobe/en/devnet/pdf/pdfs/pdf
reference archives/PDFReference.pdf

[4] Adobe Systems Incorporated. 2006. PDF Reference - sixth edition: Adobe
Portable Document Format Version 1.7. Technical Report. Adobe Systems Incor-
porated. http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/
pdf reference 1-7.pdf

[5] Ahmet Cakir. 2016. Usability and accessibility of portable docu-
ment format. Behaviour & Information Technology 35, 4 (2016),
324–334. DOI:https://doi.org/10.1080/0144929X.2016.1159049
arXiv:http://dx.doi.org/10.1080/0144929X.2016.1159049

[6] COPTR. 2017. JHOVE2. COPTR Preservation Registry entry. (2017). http:
//coptr.digipres.org/JHOVE2.

[7] Martin Donnelly. 2006. DCC Digital Curation Centre Case Studies and Interviews:
JSTOR/Harvard Object Validation Environment (JHOVE). Technical Report. Digi-
tal Curation Centre. https://www.era.lib.ed.ac.uk/bitstream/handle/1842/3335/
Donnelly%20jhove.pdf

[8] G. Endignoux, O. Levillain, and J. Y. Migeon. 2016. Caradoc: A Pragmatic
Approach to PDF Parsing and Validation. In 2016 IEEE Security and Privacy
Workshops (SPW). 126–139. DOI:https://doi.org/10.1109/SPW.2016.39

[9] Peter Fornaro and Lukas Rosenthaler. 2016. Long-term Preservation and Archival
File Formats: Concepts and solutions. Archiving Conference 2016, 1 (2016), 87–90.
DOI:https://doi.org/doi:10.2352/issn.2168-3204.2016.1.0.87

[10] Yvonne Friese. 2014. Ensuring long-term access: PDf validation with
JHOVE? PDF Association Blog Post. (2014). https://www.pdfa.org/
ensuring-long-term-access-pdf-validation-with-jhove/

20https://github.com/openpreserve/jhove/tree/ipres/pdf-test-all/test-root/corpora/
ipres-paper-pdfs/modules/PDF-hul
21https://docs.google.com/spreadsheets/d/1SWa2MtiSUQDVmlBvGb2a-b
zn7SmARv CERXlFFDED0

[11] ISO/TC 171/SC 2. 2008. ISO, ISO 32000-1:2008, Document management – Portable
document format – Part 1: PDF 1.7. International Organizsation for Standardiza-
tion. https://www.iso.org/standard/51502.html

[12] Andrew N. Jackson. 2008. Does JHOVE Validate PDF/A Files?
Blog Post. (2008). http://anjackson.net/keeping-codes/experiments/
does-jhove-validate-pdfa-files.html

[13] JSTOR. 2006. JHOVE PDF-hul. Online. (2006). http://jhove.sourceforge.net/
pdf-hul.html

[14] JSTOR. 2006. JHOVE TIFF-hul. Online. (2006). http://jhove.sourceforge.net/
tiff-hul.html

[15] Amy Kirchhoff and Sheila M. Morrissey. 2016. Digital Preservation Metadata
Practice for E-Journals and E-Books. Springer International Publishing, Cham,
83–97. DOI:https://doi.org/10.1007/978-3-319-43763-7 7

[16] Michelle Lindlar and Yvonne Tunnat. 2017. How valid is your validation? A
closer look behind the curtain of JHOVE. In 12th International Digital Curation
Conference: Upstream, Downstream: embedding digital curation workflows for
data science, scholarship and society.

[17] Peter May. 2017. Testing JHOVE PDF Module: the good, the bad, and the not
well-formed. OPF Blog Post. (2017). http://openpreservation.org/blog/2017/03/
10/testing-jhove-pdf-module-the-good-the-bad-and-the-not-well-formed

[18] Gary McGath. 2014. Mavenized JHOVE. Mad File Format Science blog post.
(2014). https://madfileformatscience.garymcgath.com/2014/03/

[19] Gary McGath. 2015. File identification tools, part 9: JHOVE2. Mad File Format
Science blog post. (2015). https://madfileformatscience.garymcgath.com/2015/
07/14/fident-9/#more-1578

[20] Gary McGath. 2015. A new home for JHOVE. Mad File Format Science blog post.
(2015). https://madfileformatscience.garymcgath.com/2015/02/03/newjhove/

[21] Gary McGath and Carl Wilson. 2016. JHOVE File validation and characterization.
Online Resource. (2016). https://sourceforge.net/projects/jhove/

[22] Becky McGuinness. 2016. JHOVE Online Hack Day Report. OPF Blogpost. (2016).
http://openpreservation.org/blog/2016/10/19/jhove-online-hack-day-report/

[23] Open Preservation Foundation. 2015. Digital Preservation Community Survey
2015. Technical Report. Open Preservation Foundation. http://openpreservation.
org/public/OPFDigitalPreservationCommunitySurvey2015.pdf

[24] Open Preservation Foundation. 2015. JHOVE Evaluation & Stabilisation Plan.
Technical Report. Open Preservation Foundation. http://openpreservation.org/
public/OPF JhoveEvaluationStabilisationPlan.pdf

[25] Open Preservation Foundation. 2017. JHOVE. GitHub Repository. (2017). https:
//github.com/openpreserve/jhove

[26] Open Preservation Foundation. 2017. JHOVE: Open source file format
identification, validation & characterisation. Website. (2017). http://jhove.
openpreservation.org/.

[27] Lavdrim Shala and Ahmet Shala. 2016. File Formats - Characterization and
Validation. IFAC-PapersOnLine 49, 29 (2016), 253 – 258. DOI:https://doi.org/10.
1016/j.ifacol.2016.11.062

[28] Yvonne Tunnat. 2016. Error detection of JPEG files with JHOVE and Bad Peggy
- so who’s the real Sherlock Holmes here? OPF Blog Post. (2016). http://
openpreservation.org/blog/2016/11/29/jpegvalidation/

[29] Yvonne Tunnat. 2017. TIFF format validation: easy-peasy? OPF
Blog Post. (2017). http://openpreservation.org/blog/2017/01/17/
tiff-format-validation-easy-peasy/

[30] Johan van der Knijff. 2017. Breaking WAVEs (and some FLACs).
OPF Blog post. (2017). http://openpreservation.org/blog/2017/01/04/
breaking-waves-and-some-flacs/

[31] W3C. Extensible Markup Language (XML) 1.0 (Fifth Edition). Technical Report.
W3C. https://www.w3.org/TR/REC-xml/

[32] Simon Whibley and et al. 2016. WAV Format Preservation Assessment. Tech-
nical Report. British Library. http://wiki.dpconline.org/images/4/46/WAV
Assessment v1.0.pdf

[33] John Whitington. 2011. PDF Explained. O’Reilly Media.


