

*<u>Discount</u> = (Reg. price) X (%Discount) (249) X (.305) = \$75.95

*<mark>\$ale Price=</mark>(Reg. price) **- (\$Discount.)** \$249.00 **- \$75.95 = \$173.05**

 \rightarrow **TAX** = (Sale Price) X (%tax)

\$173.05 × (0.0875) = \$15.14

→<u>Total Price</u>= Sale price + TAX \$173.05+\$15.14 **=** \$188.19

Commission

"How many TV's will Jesse have to sell if he needs to make \$1,000.00?"

Base Salary = is \$\$

<u>added</u> to commission

*When a Base salary is

given, it is added to

commission only pays

your commission.

When it isn't,

the person.

$$\frac{3.5}{100} = \frac{1,000}{x} \rightarrow \frac{\$100,000}{3.5} = \frac{3.5 \times 3}{3.5} \rightarrow = x = \$28571.43$$

\$28571.43 ÷ \$799 = **35.8**

He will have to sell 36 TV's to make \$1,000.

Commission rate =%

Total sales = totalCommission = part

Commission= $(comm.rate\%) \times (total sales)$

71.43 For

Increase – Number rises (went up↑) **Decrease** – Number went down ↓)

<u>% Increase</u> or

% decrease

Formula:

CHANGE (or difference)

Original Number

- → **SUBTRACT** the larger number from the smaller number
- → **DIVIDE** that number by the original number
- → CHANGE TO PERCENT. Move the DECIMAL 2 places to the left!

Proportions & Rates

$$\frac{\%}{100} = \frac{is (part)}{of (total)}$$

Set up a PROPORTION that compares 2 different units

$$ex: \frac{\$2.25}{3 \ oz.} = \frac{x}{17 \ oz.}$$

Pythagorean Theorem

When 1 Leg of a <u>Right Triangle</u> is missing, <u>use</u> the Pythagorean theorem to find the length of the missing leg.

9 =
$$a^2$$
 (hypotenuse) $41 = c^2$
 $a^2 + b^2 = c^2$
 $9^2 + b^2 = 41^2$
 $81 + b^2 = 1681$
 $b^2 = 1600$
 $b = \sqrt{1600}$ or $(40)(40)$
 $b = 40$

Scientific Notation

*****Scientific Notation Form *****

→ NUMBERS LESS than 1

X 10 exponents

Standard form

Scientific Notation

0.00120

→ 1.2 X 10⁻³

→NUMBERS GREATER than 10

X 10 + exponents

Standard form

Scientific Notation

 $45,300,000 \longrightarrow 4.53 \times 10^{+7}$

Scale Factor

(A number multiplied when scaling)

"Where all the sides of an original figure are multiplied by the same number to obtain the lengths of the corresponding sides of a new figure."

$\frac{NEW}{OLD}$

Similar Figures

SET UP A PROPORTION.

To determine if the triangles below are similar, compare their corresponding sides.

$$\frac{8.5}{1.7} = \frac{8}{x}$$

$$(8.5)(X) = (8)(1.7)$$

$$\frac{8.5x}{8.5} = \frac{13.6}{8.5}$$

$$X = 1.6$$

Surface Area

3D Figure	Lateral Surface Area	Total Surface Area
Prism	S = Ph	S = Ph + 2B
Pyramid	$S=\frac{Pl}{2}$	$S = \frac{Pl}{2} + 2B$
Cylinder	$S = 2\pi rh$	$S = 2\pi r h + 2\pi r^2$

3-Dimentional Figures

Prism			
Pyramid	\Leftrightarrow		
Cylinder		() ()	0
Cone		2	
Sphere			

Surface Area

Total = Faces + base/s

3D Figure	Lateral Surface Area	Total Surface Area
Prism	Ph	Ph + 2B
Pyramid	$\frac{Pl}{2}$	$rac{Pl}{2} + B$
Cylinder	$\frac{0}{2\pi rh}$	$2\pi rh + 2\pi r^2$

Area

>		Triangle	$\frac{bh}{2}$
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>		Rectangle	Bh
>>>>		Parallelogram	Bh
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>		Trapezoid	$\frac{(b_{1+}b_2)h}{2}$
	<u> </u>	Circle	πr 2

Length

Metric

- ★ 1 kilometer (km) = 1,000 meters (m)
 - $km \times 1000 = cm$ cm ÷ 1000 = km
- ★ 1 meter (m) = 100 centimeters (cm)
 - $m \times 100 = cm$ $cm \div 100 = m$
- ★1 centimeter (cm) = 10 millimeters (mm)
 - cm x 10 = cm cm ÷ 10 = mm

<u>Customaru</u>

- \bigstar 1 mile (mi) = 1,760 yards (yd) miles x 1760 = yd.
 - yd ÷ 1760 = miles
- ★ 1 yard (yd) = 3 feet (ft)
 - $yd \times 3 = ft$. $ft \div 3 = yd$
- \bigstar 1 foot (ft) = 12 inches (in.)
 - ft. x 12 = in.

Volume & Capacity

<u>Customary</u>

- ★1 gallon (gal) = 4 quarts (qt)
- **★1** quart (qt) = 2 pints (pt)
- ★1 pint (pt) = 2 cups (c)
- \bigstar 1 cup (c) = 8 fluid ounces (fl oz)

Metric

- ★1 liter (L) = 1,000 milliliters (mL)
 - L. x 1000 = ml.
 - $ml. \div 1000 = L.$

Weight & Mass

<u>Customary</u>

- **★**TON (T) = 2,000 pounds (lb)
- ± 1 pound (lb) = 16 ounces (oz)

Metric

- \bigstar 1 kilogram (kg) = 1,000 grams (g)
 - $Kg. \times 1000 = g.$
 - $g. \div 1000 = Kg.$
- \bigstar 1 gram (g) = 1,000 milligrams (mg)
 - g. x 1000 = mg.
 - $mg. \div 1000 = Kg.$

VOLUME

3-D Figure	VoLuMe
Prism or Cylinder	V = Bh
Pyramid or Cone	$V=\frac{Bh}{3}$
Sphere	$V = \frac{4\pi r^3}{3}$

CIRCUMFERENCE

 $C = \pi d$ $C = 2 \pi r$

 $\pi = 3.14$

Probability of Independent Events

Events have <u>no effect</u> on additional events The probability of two independent events can be found by

multiplying (P)1st event × (P)2nd event.

★EXAMPLE:

To find the probability of the spinner landing on an even number on the first spin, then landing on the number 2 on the

second spin. (The probability does NOT change because the numbers on the spinner does NOT get removed!)

$$P1\left(\frac{3}{6}\right) \bullet P2\left(\frac{1}{6}\right) = \frac{3}{6} = \frac{1}{2}$$

Probability of Dependent Events DO NOT REPLACE!

Events AFFECT other events! The probability of two dependent events can be found by

Multiplying: (P)1st event × (P)2nd event after the 1st event has occurred

The denominator (total) changes because the event is taken away (or excluded) from the total.

★EXAMPLE:

A bag contains 4 blue chips, 4 red chips, and 2 green chips. A green chip is selected and *not* put back in. Another chip is then chosen. Find *P(two* greens)

 $P(1stchip that's green) = \frac{2 green chips}{10 total chips}$

 $P(2^{nd} \text{ chip that's green}) = \frac{1 \text{ green chip}}{9 \text{ total chips}}$

P(two greens) = $\frac{2}{10} \times \frac{1}{9} = \frac{2}{90} = \frac{1}{45}$